
cheatsheet.md 2024-10-09

1 / 5

On this page you will find a collection of useful pdf files and code snippets.

Overview of Important Python Syntax

Data Types Operators
Control
Structures

Loops Libraries

Integers Addition (+) If Statements For Loop numpy

x = 5
result = a

+ b
if x > 5:

for i in

range(10):

import numpy as

np

Floats Subtraction (-) Else Statements While Loop pandas

y = 3.5
result = a

- b
else:

while x >

0:

import pandas as

pd

Strings
Multiplication
(*)

Elif Statements matplotlib

name = "John"
result = a

* b
elif x < 10:

import

matplotlib.pyplot

as plt

Lists Division (/) Try and Catch

my_list = [1, 2,

3]

result = a

/ b
try:

Data Frames Modulus (%)
Break and
Continue

df =

pd.DataFrame(data)

result = a

% b

break # Exit

the loop

when

Arrays
Exponentiation
(**)

continue #

Skip the

even numbers

my_array =

np.array([1, 2,

3])

result = a

** b

Matrix Boolean

my_matrix =

np.array([[1, 2],

[3, 4]])

<, >, ==,

>=, <=, !=

Basics of Syntax
Python is known for its simple and readable syntax. Here are some basic rules:

cheatsheet.md 2024-10-09

2 / 5

No semicolon (;) at the end of a line.
Indentation with 4 spaces instead of curly braces ({}) for code blocks.
Comments start with a #.

This is a comment

print("Hello, World!") # Outputs Hello, World!

Data Types and Variables
Python is dynamically typed. Variable assignment is done simply with the = sign.

Examples of Data Types:

int (Integers)
float (Floating-point numbers)
str (Strings)
bool (Boolean)

x = 10 # int

y = 3.14 # float

name = "Alice" # str

is_student = True # bool

Control Structures (If, Loops)

If-Else

if x > 5:

 print("x is greater than 5")

else:

 print("x is 5 or smaller")

For Loop

for i in range(5):

 print(i) # Outputs 0 to 4

While Loop

n = 0

while n < 5:

cheatsheet.md 2024-10-09

3 / 5

 print(n)

 n += 1

Error Handling
You can catch errors with try and except.

try:

 result = 10 / 0

except ZeroDivisionError:

 print("Division by zero is not allowed")

Functions and Methods

Functions in Python are defined with the def keyword.

def greet(name): return f"Hello, {name}!"

print(greet("Bob")) # Outputs "Hello, Bob!"

Objects

Lists,

fruits = ["Apple", "Banana", "Cherry"]

print(fruits[1]) # Outputs "Banana"

Conclusion

Lists are flexible data structures in Python that can contain elements of different data types. Arrays, on the
other hand, are homogeneous data structures that store elements of the same data type. NumPy arrays
provide superior performance for mathematical operations compared to Python lists and are optimized for
scientific computing.

Data Frames

import pandas as pd

Creating lists

a = ["Max", "Sara"]

b = [24, 42,]

Creating a data frame from lists with assigned column names

cheatsheet.md 2024-10-09

4 / 5

patients = pd.DataFrame({

 'Name': a,

 'Age': b,

})

Matrix

import numpy as np

Create a matrix

M = np.array([[3,5,6], [11,76,4], [0,7,99]])

Conclusion

DataFrames are versatile data structures provided by the Pandas library in Python. They allow for the storage
and manipulation of tabular data with labeled axes (rows and columns). DataFrames are particularly useful for
data analysis and manipulation.

Matrices, on the other hand, are primarily used for numerical computations. While matrices are suited for
mathematical operations such as matrix multiplication and linear algebra, they lack the rich functionalities of
DataFrames for data manipulation and analysis.

Reading and Writing Files

Reading

with open("file.txt", "r") as file:

 content = file.read()

 print(content)

Writing

with open("file.txt", "w") as file:

 file.write("Hello, World!")

Modules and Packages
Modules in Python are collections of functions. You can use them with import.

import math

print(math.sqrt(16)) # Outputs 4.0

cheatsheet.md 2024-10-09

5 / 5

Useful Libraries

NumPy

NumPy is a library for numerical computations.

import numpy as np

a = np.array([1, 2, 3])

print(a * 2) # Outputs [2, 4, 6]

Pandas

Pandas is great for data analysis.

import pandas as pd

data = {'Name': ['Alice', 'Bob'], 'Age': [25, 30]}

df = pd.DataFrame(data)

print(df)

